Amidoxime Polymers for Uranium Adsorption: Influence of Comonomers and Temperature
نویسندگان
چکیده
Recovering uranium from seawater has been the subject of many studies for decades, and has recently seen significant progress in materials development since the U.S. Department of Energy (DOE) has become involved. With DOE direction, the uranium uptake for amidoxime-based polymer adsorbents has more than tripled in capacity. In an effort to better understand how these new adsorbent materials behave under different environmental stimuli, several experimental and modeling based studies have been employed to investigate impacts of competing ions, salinity, pH, and other factors on uranium uptake. For this study, the effect of temperature and type of comonomer on uranium adsorption by three different amidoxime adsorbents (AF1, 38H, AI8) was examined. Experimental measurements of uranium uptake were taken in 1-L batch reactors from 10 to 40 °C. A chemisorption model was developed and applied in order to estimate unknown system parameters through optimization. Experimental results demonstrated that the overall uranium chemisorption process for all three materials is endothermic, which was also mirrored in the model results. Model simulations show very good agreement with the data and were able to predict the temperature effect on uranium adsorption as experimental conditions changed. This model may be used for predicting uranium uptake by other amidoxime materials.
منابع مشابه
A graphene oxide/amidoxime hydrogel for enhanced uranium capture
The efficient development of selective materials for the recovery of uranium from nuclear waste and seawater is necessary for their potential application in nuclear fuel and the mitigation of nuclear pollution. In this work, a graphene oxide/amidoxime hydrogel (AGH) exhibits a promising adsorption performance for uranium from various aqueous solutions, including simulated seawater. We show high...
متن کاملCurrent status of technology for collection of uranium from seawater
Total amount of uranium resource in seawater is one thousand times of that in terrestrial ores. A polymeric adsorbent being capable of collecting uranium in seawater was developed in early 1980s, since uranium is inevitable resource to operate atomic power plants. This adsorbent fabric was synthesized by radiation-induced graft polymerization which could impart a desired functional group into f...
متن کاملRemoval of uranium (U(VI)) ions using NiO NPs/Ag-clinoptilolite zeolite composite adsorbent from drinking water: equilibrium, kinetic and thermodynamic studies
The present research describes the performance of NiO NPs/Ag-clinoptilolite composite adsorbent for the removal of uranium (U(VI)) ions from drinking water of Dezful city-Iran. Prior to the experiment reactions, Na-clinoptilolite was chemically treated with NaCl, Silver ions (Ag+) and subsequently Nickel (NiO) NPs to prepare NiO NPs/Ag-clinoptilolite. The samples were characterized by SEM, AAS,...
متن کاملRemoval of uranium (U(VI)) ions using NiO NPs/Ag-clinoptilolite zeolite composite adsorbent from drinking water: equilibrium, kinetic and thermodynamic studies
The present research describes the performance of NiO NPs/Ag-clinoptilolite composite adsorbent for the removal of uranium (U(VI)) ions from drinking water of Dezful city-Iran. Prior to the experiment reactions, Na-clinoptilolite was chemically treated with NaCl, Silver ions (Ag+) and subsequently Nickel (NiO) NPs to prepare NiO NPs/Ag-clinoptilolite. The samples were characterized by SEM, AAS,...
متن کاملInvestigation of uranium (VI) adsorption by polypyrrole.
The purpose of this study was to investigate the adsorption of uranium (VI) ions on the polypyrrole adsorbent. Polypyrrole was synthesized by a chemical method using polyethylene glycol, sodium dodecylbenzenesulfonate, and cetyltrimethylammonium bromide as the surfactant and iron (III) chloride as an oxidant in the aqueous solution. The effect of various surfactants on the synthesized polymers ...
متن کامل